Zoofast.fr: votre destination pour des réponses précises et fiables. Obtenez des conseils étape par étape pour toutes vos questions techniques de la part de membres de notre communauté bien informés.

Bonjour, je dois réaliser cet exercice mais  je n'y arrive pas:

 

On considère la fonction f définie sur R par: [tex]f(x)=\frac{x}{1+x^{2}}[/tex]

 

a) Montrer que f est impaire, c'est a dire que pour tout réel x, f(-x)= -f(x)

 

b) Calculer f(x) pour toutes les valeurs x de l'ensemble [tex]0,\frac{1}{4},\frac{1}{2},1,2,3,4,5,6[/tex]

 

 

c)Pouvez-vous faire l'hypothese d'un maximum de f sur [0;+∞ [ ? Vérifiez-la par le calcul

 

d) Etudier les variations de f sur  [0;1], puis sur  [1;+∞ [

 

e) Dresser son tableau de variations puis esquisser au mieux sa representation graphique

 

Pouvez-vous m'aider s'il vous plait 

Merci

 

Sagot :

On considère la fonction f définie sur R par: 

 

a) Montrer que f est impaire, c'est a dire que pour tout réel x, f(-x)= -f(x)

f(-x)=(-x)/(1+(-x)²)

      =-x/(1+x²)

      =-f(x)

donc f est imapire sur IR

 

b) Calculer f(x) pour toutes les valeurs x de l'ensemble 

 il faut utiliser une table de valeurs

(cf calculatrice)

 

c)Pouvez-vous faire l'hypothese d'un maximum de f sur [0;+∞ [ ? Vérifiez-la par le calcul

f possède un maximum en 1/2

ce maximum est atteint pour x=1

 

vérification

f(x)=x/(1+x²)

f(1)=1/2

or (1-x)² > 0

donc 1-2x+x² >0

donc 1+x² > 2x

donc x/(1+x²) < 1/2

donc f(x) < 1/2

 

d) Etudier les variations de f sur  [0;1], puis sur  [1;+∞ [

 * f est décroissante si x<-1

* f est croissante si -1 < x < 1

*  f est décroissante s X >1

 

e) Dresser son tableau de variations puis esquisser au mieux sa representation graphique

graphique laissé au lecteur........

Votre engagement est important pour nous. Continuez à partager vos connaissances et vos expériences. Créons un environnement d'apprentissage agréable et bénéfique pour tous. Merci d'avoir utilisé Zoofast.fr. Nous sommes là pour répondre à toutes vos questions. Revenez pour plus de solutions.