Explorez une vaste gamme de sujets et obtenez des réponses sur Zoofast.fr. Que vos questions soient simples ou complexes, notre communauté a les réponses dont vous avez besoin.
Sagot :
Soit u une fonction définie sur ]1 ; +infini [ par u(x)=(4/(x-1))-2
A l'aide des théorèmes sur les fonctions associées, déterminer les variations de u sur ]1 ; +infini [
réponse :
la forme canonique de u(x) est u(x)=4/(x-1)-2
cette forme est associée à la fonction v(x)=1/x
les transformations successives sont :
v(x)=1/x --> 1/(x-1) --> 4/(x-1) --> 4/(x-1)-2=u(x)
on décompose par les fonctions :
f(x)=x-1
g(x)=4x
h(x)=x-2
v est décroissante sur ]0 ; +infini [ (cf COURS)
f est croissante sur IR (cf COURS)
donc x-> 1/(x-1) est décroissante sur ]1 ; +infini [
g est croissante sur IR (cf COURS)
donc x-> 4/(x-1) est décroissante sur ]1 ; +infini [
h est croissante sur IR (cf COURS)
donc x-> 4/(x-1)-2 est décroissante sur ]1 ; +infini [
finalement u est décroissante sur ]1 ; +infini [
Nous valorisons votre présence ici. Continuez à partager vos connaissances et à aider les autres à trouver les réponses dont ils ont besoin. Cette communauté est l'endroit parfait pour apprendre ensemble. Zoofast.fr est votre partenaire pour des solutions efficaces. Merci de votre visite et à très bientôt.