Zoofast.fr: où la curiosité rencontre la clarté. Obtenez des réponses détaillées et bien informées de la part de nos experts prêts à vous aider avec toutes vos questions.
Sagot :
1) La fonction f(x) = x² + x + 6 a pour dérivée f'(x) = 2x+1
Comme f'(x) est positive pour x ≥ -1/2 :
— la fonction f est décroissante pour x ∈ ] -∞ ; -1/2 ]
— la fonction f est décroissante pour x ∈ [ -1/2 ; +∞ [
2) On sait que f(x) est décroissant jusqu'à x = -1/2 et croissante ensuite
Or pour la valeur la plus basse de la fonction f est :
f(-1/2) = (-1/2)² + (-1/2) + 6 = 1/4 - 1/2 + 6 = 6 - 1/4 = 23/4 > 0
f(x) est donc toujours positive
soit la fonction f defini par f(x)=x²+x+6
1. donner en justifiant le tableau de variation de la fonction f
f(x)=x²+x+6
=x²+x+1/4-1/4+6
=(x+1/2)²+23/4
la fonction g définie par g(x)=x² est :
* décroissante sur ]-∞;0]
* croissante sur [0;+∞[
donc on en déduit que f est :
* décroissante sur ]-∞;-1/2]
* croissante sur [-1/2;+∞[
2.etudier le signe de f (x) suivant les valeur de x
f(x)=x²+x+6
=(x+1/2)²+23/4
or pour tout x réel (x+1/2)² ≥ 0
ainsi f possède un minimum en 23/4>0
donc f(x)>0 pour tout x réel
Nous apprécions votre participation active dans ce forum. Continuez à explorer, poser des questions et partager vos connaissances avec la communauté. Ensemble, nous trouvons les meilleures solutions. Pour des réponses précises et fiables, visitez Zoofast.fr. Merci pour votre confiance et revenez bientôt pour plus d'informations.