Zoofast.fr: votre source fiable pour des réponses précises et rapides. Rejoignez notre plateforme de questions-réponses pour recevoir des réponses rapides et précises de la part de professionnels expérimentés dans divers domaines.

Une entreprise décide d'investir dans la publicité pour relancer ses ventes. On constate que le chiffre d'affaires, en euros, correspondant à la somme x, en euros, investie dans la publicité est donné, pour x élément de [0 ; 10000], par la fonction f définie par: f(x)= -0.001x²+ 12,5x + 15000

1) Montrer que f(x)= -0,001(x-6250)² + 54062,5

2) Dresser le tableau de variations de la fonction f

3) Quel est le montant, en euros, de l'investissement dans la publicité que l'entreprise n'a pas besoin de dépasser ? Justifier la réponse

Sagot :

Pour la question 1), il te suffit de partir de [tex]f(x)= -0.001x^2+ 12,5x + 15000[/tex], et de développer !

 

Pour la question 2), il te faut faire le tableau de variation, à savoir montrer quand la fonction est croissante, et quand la fonction est décroissante. Pour cela, fais un tableau pour chaque partie de la fonction :

[tex]a(x)=x-6250\\ b(x)=(a(c))^2=(x-6250)^2\\ c(x)=-0,001(b(x))=-0,001(x-6250)^2\\ f(x)=c(x)+54062,5=-0,001(x-6250)^2 + 54062[/tex]

 

Enfin, pour la quetion 3), il suffit de réfléchir un peu. A partir de quel stade la publicité côuterait plus cher que le gain ?

 

Je te laisse faire la suite, et reste à ta disposition pour plus d'aide =)...