Trouvez des solutions à vos problèmes avec Zoofast.fr. Trouvez rapidement et facilement les informations dont vous avez besoin avec notre plateforme de questions-réponses précise et complète.

Cunégonde a remarqué que certains multiples de 4 s'écrivent comme la différence de deux carrés d'entiers .Par exemple : 4=4-0=2²-0² ; 8=9-1=3²-1² ; 12=16-4=4²-2² . Continuer le processus de cunégonde pour écrire 16,20,24,28,32,36 comme différences de deux carrés .

Sagot :

Coucou,

 

multiple de 4 = carrée d'un entier - carrée d'un entier:

4= 4 - 0

8= 9 - 1

12= 16 - 4

16 = 25-9

20= 36-16

24=49-25

....il faut que tu continues jusqu'à 36=...(je pense que tu peux le faire)

 

Comment j'ai fais ?

quand on regarde les premiers

4= 4 - 0

8= 9 - 1

12= 16 - 4

on remarque que c'est :

4x1 = 2 ²- 0² (donc moins 0 pour que ça fasse 4=4x1)

4x2=-1  (donc moins 1 pour que ça fasse 8=4 x2)

4x3 = 4² - 4

Donc ensuite ça sera :

4 x4 = 5²- 9 

 

Ainsi, tous les multiples de 4 s'écrivent comme la différence de deux carrés, autrement dit, on n'a qu'à utiliser l'expression (n+1)²-(n-1)², car :

(n+1)²-(n-1)²

=n²+2n+2-(n²-2n+2)
=4n

Soit a un multiple de 4
il s'écrit donc 4n où n est un entier
donc a=4n=(n+1)²-(n-1)² est bien une différence de deux carrés, autrement dit le nombre 4n est la différence entre (n+1)² et (n-1)².

 

 

J'espère que tu as compris 

Voilà ;)

Merci de votre participation active. Continuez à poser des questions et à partager vos réponses. Ensemble, nous pouvons créer une ressource de connaissances précieuse pour tous. Nous espérons que vous avez trouvé ce que vous cherchiez sur Zoofast.fr. Revenez pour plus de solutions!