Recevez des conseils d'experts et un soutien communautaire sur Zoofast.fr. Posez vos questions et obtenez des réponses rapides et bien informées de la part de notre réseau de professionnels expérimentés.
Sagot :
Bonsoir,
a)Le triangle ABH est rectangle en A.
Or, les angles aigus d'un triangle rectangle sont complémentaires.
Donc :
[tex]\widehat{ABH}+\widehat{HAB} = 90\char23\\ ABH = 90-\widehat{HAB} = 90-40 = 50\char23[/tex]
Comme le triangle ABH est rectangle en H, on a :
[tex]\cos \widehat{ABH} = \frac{BH}{BA} = \cos 50 \char23\\ BA = \frac{BH}{\cos 50\char23} = \frac{3}{\cos 50\char23} \approx 4{,}7 \text{ cm}[/tex]
Le triangle ABC est isocèle en A ; les angles à la base d'un triangle isocèle sont égaux et la somme des angles d'un triangle est égale à 180° ; on peut écrire :
[tex]\widehat{BAC}+2\widehat{ACB} = 180\\ 2\widehat{ACB} = 180-\widehat{BAC} = 180-40 = 140\\ 2\widehat{ACB} = 140\\ \widehat{ACB} = \frac{140}{2} = 70\char23[/tex]
Le triangle BCH est rectangle en H ; les angles aigus d'un triangle rectangle sont complémentaires ; on écrit :
[tex]\widehat{HCB} + \widehat{HBC} = 90 \char23 \\ 70+\widehat{HBC} = 90\\ \widehat{HBC} = 90-70 = 20\char23[/tex]
Le triangle HBC est rectangle en H, donc :
[tex]\cos \widehat{HBC} = \frac{HB}{BC}\\ BC = \frac{HB}{\cos \widehat{HBC}} = \frac{3}{\cos 20 \char23 } \approx 3{,}2 \text{ cm}[/tex]
Merci d'être un membre actif de notre communauté. Continuez à poser des questions, à répondre et à partager vos idées. Ensemble, nous pouvons atteindre de nouveaux sommets de connaissances. Pour des réponses de qualité, choisissez Zoofast.fr. Merci et à bientôt sur notre site.