Bienvenue sur Zoofast.fr, votre plateforme de référence pour toutes vos questions! Posez n'importe quelle question et obtenez une réponse détaillée et fiable de la part de notre communauté d'experts.

Bonjour, j'ai besoin d'aide pour un devoir de maths sur les dérivations. Je n'y arrive vraiment pas. Merci d'avance pour votre aide. Exercice: Dans une usine de produits alimentaires, une machine fabriquant de la moutarde est utilisée 12 heures par jour, en continu. La fonction f, définie sur [0;10]par: f(t)= -t³+ 12t²+72t, représente la production totale de moutarde apres t heures de fonctionnement. La dérivée de f, f'(t), représente la production marginale de cytet machine apres t heures d'utilisation. 1°) a)Determiner f'(t). Déterminer la dérivée de la production marginale notée g(t). b) Etudier la production marginale et montrer qu'elle admet un maximum atteint en t0=4. En déduire le signe de la production marginale f'(t). c) A l'aide de la question précédente, justifier que la production totale est croissante sur [0;10]. d) Visualiser la courbe de la production totale à l'écran d'une calculatrice avec Y∈[0;1300]. 2°) Sur l'intervalle ou la production marginale est croissante, on parle de " phase de rendements croissants". Sur l'intervalle ou la production marginale est décroissante on parle de "phase de rendements décroissants". A l'instant t0 , ou la production marginale change de sens de variation , le point I d'abscisse t0 de la courbe C de la production totale est un point d'inflexion. a)Indiquer les deux phases et le point d'inflexion I pour cette production. b) Determiner l'équation réduite de la tangente T à la courbe C au point d'inflexion I sous la forme y=h(t). c) Etudier le signe de la différence f(t)-h(t) sur l'intervalle [0;10]. On vérifiera que: f(t)-h(t)=-(t-4)³. Justifier la phrase:" Au point d'inflexion, la courbe traverse sa tangente

Sagot :

1) a) f'(t) = -3t(au carré) + 24t + 72
g(t) = f''(t) = -6t + 24

b) g(t) > 0
-6t + 24 > 0
6t < 24
t < 4
Donc g(t) > 0 pour t < 4
D'où g(t) < 0 pour t > 4
Tu peux faire un tableau de signes ( tu calcules g(t) = 0 pour savoir où la dérivée s'annule --> g(t)=0 revient a dire que -6t + 24 = 0 et donc que t=4 DONC g(4) = 0 )
f'(t) est la production marginale
Donc f'(t) est croissante sur [-infini ; 4] et décroissante sur [4 ; +infini]. (On déduit ça grâce au signe de la dérivée, c'est-à-dire g(t) )
La dérivée g(t) s'annule en changeant de signe en t = 0. Donc f'(t) (la production marginale) admet un maximum (tu peux le voir sur le tableau de signes, si tu l'as fait) en 0 qui vaut 4.

Signe de la production marginale et donc de f'(t):
f'(t) = -3t(au carré) + 24t + 72
On cherche le discriminant:
Delta = b(au carré) - 4ac
Delta = 24(au carré) - 4 (-3) (72) = 576 + 864 = 1440
Delta > 0 donc ce polynôme admet deux racines:
t' = (-b - racine de delta) / 2a
t' = (-24 - racine de 1440) / 2 (-3)
t' = 4 + 2 (racine de 10)
t' = 10,325 environ
t'' = 4 - 2 (racine de 10)
t'' = -2,325 environ.

f'(t) est donc positive sur [-2,325 ; 10, 325] et négative sur [-infini ; -2,325] U [10,325 ; +infini]

Dis moi si tu comprends quelque chose et si tu veux je continue :)