Physique 4 (3pts) Etude du mouvement d'un plongeur
La plongée sous-marine est l'un des sports importants du corps humain, et c'est l'un des sports
olympiques qui nécessite la maîtrise d'un grand effort physique et des connaissances théoriques.
Dans un premier temps, nous proposons dans cet exercice d'étudier le mouvement du centre d'inertie G
d'un plongeur de masse m lors de son saut. Dans un deuxième temps, son mouvement dans l'eau.
Nous étudions le mouvement du centre d'inertie G du plongeur dans le repère (o; i; j) représenté sur la
figure ci-dessous où l'axe OX est situé à la surface de l'eau. Nous considérons le référentiel lié à la terre
Galiléen.
Partie I: saut en plongée
T
Les parties I et II sont indépendantes
Ув
Dans cette partie, nous négligeons toutes les actions de l'air.
À un moment que nous considérons comme origine des dates t=0s, le centre d'inertie G du plongeur part du
point A, qui est à une hauteurh de la surface de l'eau, avec une vitesse initiale VA qui fait un l'angle a
avec le plan horizontal passant par A; Voir figure 1.
On prend :α=80°;
y₁ =4,0mg=9,8m.s
1. En appliquant la deuxième loi de Newton, montrer que l'équation de la trajectoire du centre d'inertie G
du plongeur s'écrit sous la forme:
-1
g
y=
x²+x.tana + y
2 v.cos a
(0,5pt)
2. Le point S représente le sommet de la trajectoire dont l'abscisse est.x, = 28cm.
Montrer que V = 4m. s''. (0,5pt)
3. Les mains du plongeur atteignent la surface de l'eau à l'instant t où L'ordonné de son centre
d'inertie G est YB = 1m. Calculer la vitesse VB du centre G à l'instant tg et la valeur de l'angle ẞ
que forme le vecteur vitesse VB avec l'axe OX. (0,5pt)