Zoofast.fr rend la recherche de réponses rapide et facile. Posez vos questions et obtenez des réponses détaillées et fiables de notre communauté d'experts bien informés.

AU SECOURS aider moi car j'ai un exo à faire dont je ne comprends meme pas la premiere question (ni les autres non plus).

TANGENTE à L'HYBERBOLE H: y=1/x

 
1) Tracer H pour x appartenant à l'intervalle [-5 ; -0.2]U[0.2 ; 5]  
2)a) determiner une equation de la tangente à H au point A1(1;1) et la tracer. 
b) en quel point coupe t elle l'axe des abscisses? 

3 le point de H d'abscisse a , a different de 0 
a) ecrire une equation de la tangente à H en a. 
b) determiner son point d intersection P avec l'axe des abscisses. 
c) Connaissant A, expliquer comment construire P. 
d) EN deduire une construction geométrique de la tangente en A à H et la mettre en oeuvre pour tracer les tangentes à H aux points d'abscisses -5 ; -3 ; -2 ; -1 ; 2; 3 ; et 5.

Sagot :

1 - J'ai posté une image de la courbe en pièce jointe ! 

 

2 - a) On sait que, pour la dérivée d'un point de la courbe d'équation [tex]y=\frac{1}{x}[/tex] sera égale à [tex]-\frac{1}{x^2}[/tex]. Donc, au point de coordonnées ( 1 ; 1 ) donc d'abscisse 1, la dérivée de la fonction sera égale à [tex]-\frac{1}{1^2}[/tex]=-1. Autrement dit f'[tex]f'(1)=-1[/tex].

On sait que pour déterminer l'équation de la tangente à la courbe, il faut se servir de la formule donnée dans le cour : [tex]y=f'(a)(x-a)+f(a)[/tex], donc ici, avec a =1.

On a donc [tex]y=-1(x-1)+1[/tex] ce qui équivaut à [tex]y=-x+2[/tex].

 

      b) Nous cherchons donc à résoudre l'équation [tex]0=-x+2[/tex], car si la tangente coupe l'axe des abscisse, alors y vaut 0. 

L'équation se résout bien bite : [tex]-x=-2[/tex] donc [tex]x=2[/tex]. La tengante coupe donc l'axe des abscisse au point de coordonnées ( 2 ; 0 ).

 

3 - a) En a, comme vu dans le cours, l'équation de la tengante reviendra à [tex]f'(a)(x-a)+f(a)[/tex], donc, si l'on se sert des formules, à [tex]y=-\frac{1}{a^2}(x-a)+\frac{1}{a}[/tex].

     b) Pour calculer P, il faut résoudre l'équation [tex]0=-\frac{1}{a^2}(x-a)+\frac{1}{a}[/tex].

     c) Lorsque l'on connaît a, il faudra donc le remplacer dans l'équation ci dessous, et la résoudre.

     d) La tangente passera donc par les deux points [tex]( a ; \frac{1}{a} )[/tex] et [tex]( solution\ de\ l'equation\ ci\ dessus\ avec\ a\ remplace\ ; 0 )[/tex].

Il suffit donc juste de résoudre l'équation pour chaque a et de tracer la droite passant par les deux points ! ( on a parfois besoin de calculer les racines de trinômes du second degré, ainsi il faut avoir vu le cours sur le second degré ).

 

En éspérant t'avoir aidé !