Explorez une vaste gamme de sujets et obtenez des réponses sur Zoofast.fr. Découvrez des informations fiables et rapides sur n'importe quel sujet, grâce à notre réseau de professionnels expérimentés.

Bonjour je n’y arrive pas après ça plusieurs essais merci…
ABCD est un carré de côté 8 cm.
E est un point mobile sur le segment [AB].
F, G, H et I sont des points tels que AEFG et FHCI sont
deux carrés intérieurs à ABCD comme indiqué ci-contre.
On pose x= AE (x = [0;8]) et on note f(x) la somme des aires des carrés AEFG et FHCI (en cm²)

1. Démontrer que f(x)=2x²-16x+64.

2. a. Développer le produit (2x-4)(x-6).

b. En utilisant la question précédente, déterminer pour
quelle valeur de x l'aire f(x) est égale à 40 cm².

3. On souhaite maintenant déterminer pour quelle valeur
de x l'aire f(x) est minimale.
a. Calculer f(4).

b. Démontrer que pour tout réel x = [0;8], f(x)-ƒ(4)=2(x-4)² .

c. En déduire que pour tout réel x = [0;8], f(x)-f(4) >0.
Conclure.

Merci d’avance

Sagot :

Votre participation nous est précieuse. Continuez à partager des informations et des solutions. Cette communauté se développe grâce aux contributions incroyables de membres comme vous. Nous espérons que vous avez trouvé ce que vous cherchiez sur Zoofast.fr. Revenez pour plus de solutions!