Connectez-vous avec une communauté de passionnés sur Zoofast.fr. Explorez des milliers de réponses vérifiées par des experts et trouvez les solutions dont vous avez besoin, quel que soit le sujet.

Ex 4:

ABC est un triangle quelconque. On considère les points I, Jet K tels que: vec II = 3 4 vec AC vec AJ = 2 3 vec AB overline BK = 3 5 overline B

On souhaite démontrer que les droites (AK), (BI) * et(CI) sont trois droites concourantes, c'est-à-dire qu'elles sont sécantes en un même point. On appelle E le point d'intersection des droites (AC) et (BI).

1) Dans le repère (A; vec AB , vec AC ) , déterminer les coordonnées des points I, J

et vérifier que K a pour coordonnées (2/5; 3/5)

2) Déterminer une équation cartésienne de la droite (BI) et vérifier que 3x + 4y - 3 = 0 est une autre équation cartésienne de la droite (BI). On admet que 3x - 2y = 0 est une équation cartésienne de la droite (AK).

3) En déduire les coordonnées du point E.

4) Démontrer que les droites (AK), (BI) et (CJ) sont trois droites concourantes.​

Ex 4ABC Est Un Triangle Quelconque On Considère Les Points I Jet K Tels Que Vec II 3 4 Vec AC Vec AJ 2 3 Vec AB Overline BK 3 5 Overline BOn Souhaite Démontrer class=