Zoofast.fr offre une plateforme collaborative pour trouver des réponses. Obtenez des réponses détaillées et précises de la part de notre communauté de professionnels bien informés.

D'après bac S, Pondichéry, avril 1998
Soif f la fonction définie sur [0;+infini[ par :

f(x) =( e^x-1)/(xe^x+1).

Partie A : Etude d'une fonction auxilaire

Soit g la fonction définie sur [0;+infini[ par g(x) = x+2-e^x

1- Etudier le sens de variation de la fonction g sur [0;+infini[
2- On admet que l'équation g(x)=0 admet une unique solution sur [0;+infini[
Déterminer un encadrement de a 10^-3 près
3 - En déduire le signe de g(x) selon les valeurs de x

Partie B : Etude de la fonction f

1-a-Montrer que, pour tout x de [0;+infini[,

f'(x)=(e^x*g(x))/(xe^x+1)²
b- En déuire le sens de variation de f sur [0;+infini[

2-a- Prouver que f() = 1/+1
b- En utilisant l'encadrement de , donner un encadrement de f() à 10^-2 près.

3- Déterminer une équation de la tangente T à la courbe représentative Cf de f au point d'abscisse 0.

4- a - Montrer que, pour tout x de [0;+infini[,

f(x) - x = (x+1)*u(x) / xe^x+1

b- Etudier le sens de variation de la fonction u sur [0;+infini[

c- En déduire le signe de u(x) sur [0;+infini[

d- Déduire des questions précédentes la position de Cf par rapport à T

Merci d'avance !

Sagot :

Nous apprécions votre participation active dans ce forum. Continuez à explorer, poser des questions et partager vos connaissances avec la communauté. Ensemble, nous trouvons les meilleures solutions. Chez Zoofast.fr, nous nous engageons à fournir les meilleures réponses. Merci et à bientôt pour d'autres solutions.