Explorez une multitude de sujets et trouvez des réponses fiables sur Zoofast.fr. Notre plateforme interactive de questions-réponses fournit des réponses précises et complètes pour vous aider à résoudre vos problèmes rapidement.

On considère un triangle ABC quelconque. On veut démontrer que les trois médiatrices dans le triangle ABC sont concourantes et que leur point d'intersection est le centre du cercle circonscrit au triangle. On appelle m, la médiatrice du segment [AB], m, la médiatrice du segment [AC] et m, la médiatrice du segment [BC]. On pourra faire une figure pour se faire une idée. 1. Démontrer que m, et m, ne sont pas parallèles.
2. On appelle O le point d'intersection de m, et m₂. a. Puisque O appartient à m,, quelle relation. existe-t-il entre les longueurs OA et OB ? b. De même, comparer les longueurs OA et OC.
3.
a. Que peut-on en déduire sur les longueurs OB et OC ?
b. Le point O appartient-il alors à m₂ ?
4. Quelle interprétation géométrique peut-on donner à la comparaison des trois longueurs OA, OB et OC ?
5. Conclure en résumant les propriétés démontrées.​