on considère la suite (un) définie pour tout entier naturel n
par : un + 1 = 3 un + 1 / 2un + 4 et u0 = 1) montrer que pour tout entier naturel n,un est superieur ou egal à 0
2).on peut alors introduire alors la suite auxiliaire(tn) definie pour tout entier naturel n par tn=2un-1/un+1
a)montrer que la suite(tn) est geometrique de raison 2/5
b)expliciter tn,en fonction de n pour tout entier naturel n
3) en deduire l expression explicitr de un en fonction de n pour tout entier naturel n
4)en deduire la convergence de la suite(un) et donner sa limite