Obtenez des conseils d'experts et des connaissances communautaires sur Zoofast.fr. Posez n'importe quelle question et recevez des réponses rapides et bien informées de la part de notre communauté d'experts expérimentés.

Bonsoir ! Je bloque complètement sur cet exercice, quelqu'un s'aurait m'orienter ? Merci beaucoup :)

Bonsoir Je Bloque Complètement Sur Cet Exercice Quelquun Saurait Morienter Merci Beaucoup class=

Sagot :

Bonsoir, voici la réponse à ton exercice :

1. On a 1 + [tex]i\sqrt{3} [/tex] = [tex]2(\frac{1}{2} + i\frac{\sqrt{3} }{2})[/tex] = [tex]2e^{i\frac{\pi }{3}} [/tex]

2. On en déduit que pour [tex]n[/tex]∈[tex]\mathbb{N}[/tex], [tex](1 + i\sqrt{3})^n [/tex] [tex]= (2e^{i\frac{\pi }{3})^n [/tex] [tex]= 2^ne^{i\frac{n\pi }{3}} [/tex], puis que

[tex](1 + i\sqrt{3})^n [/tex] ∈ [tex]\mathbb{R}[/tex]*₊, ⇔ [tex]2^ne^{i\frac{n\pi }{3}} [/tex] ∈ [tex]\mathbb{R}[/tex]*₊ ⇔ [tex]e^{i\frac{n\pi }{3}} [/tex] ∈ [tex]\mathbb{R}[/tex]*₊ ⇔ arg([tex]e^{i\frac{n\pi }{3}} [/tex]) = 0 [2[tex]\pi [/tex]]

                           ⇔ [tex]n\frac{\pi }{3} = 0 [2\pi ] [/tex] ⇔ [tex]n =[/tex] 0 [6] ⇔ [tex]\exists k \in \mathbb{Z}, n = 6k.[/tex]

Les entiers naturels [tex]n [/tex] tels que [tex](1 + i\sqrt{3})^n \in \mathbb{R}[/tex]*₊ sont les 6[tex]k[/tex] où k∈[tex]\mathbb{N}[/tex].

En espérant t'avoir aidé au maximum !

Nous valorisons chaque question et réponse que vous fournissez. Continuez à vous engager et à trouver les meilleures solutions. Cette communauté est l'endroit parfait pour grandir ensemble. Revenez sur Zoofast.fr pour des réponses fiables à toutes vos questions. Merci de votre confiance.