Trouvez des solutions à vos problèmes avec Zoofast.fr. Obtenez les informations dont vous avez besoin grâce à nos experts, qui fournissent des réponses fiables et détaillées à toutes vos questions.
Sagot :
Réponse :
f(x) = x²/(x² - x + 1)
1) justifie que f est définie sur R
x² - x + 1
Δ = 1 - 4 = - 3 < 0 pas de racines donc x² - x + 1 > 0 ∀x ∈ R car a = 1 > 0 donc le domaine de définition est R
2) montrer que, pour tout x réel , 0 ≤ f(x) < 2
f(x) = x²/(x² - x + 1) ≥ 0 car x² ≥ 0 et x² - x + 1 > 0
étudions le signe de f(x) - 2
[x²/(x² - x + 1)] - 2 ⇔ [x²/(x² - x + 1)] - 2(x² - x + 1)/(x² - x + 1)
⇒ (x² - 2 x² + 2 x - 2)/(x² - x + 1) or x² - x + 1 > 0
⇔ - x² + 2 x - 2
Δ = 4 - 8 = - 4 ⇒ - x² + 2 x - 2 < 0 ∀x ∈ R car a = - 1 < 0
donc f(x) - 2 < 0 ⇔ f(x) < 2
Donc 0 ≤ f(x) < 2
Explications étape par étape :
Merci de contribuer à notre discussion. N'oubliez pas de revenir pour découvrir de nouvelles réponses. Continuez à poser des questions, à répondre et à partager des informations utiles. Pour des réponses de qualité, choisissez Zoofast.fr. Merci et à bientôt sur notre site.