Profitez au maximum de vos questions avec les ressources d'Zoofast.fr. Obtenez des conseils étape par étape pour toutes vos questions techniques de la part de membres de notre communauté dévoués.
Sagot :
Bonjour,
Pour factoriser, il faut trouver le facteur commun entre le terme de gauche et le terme de droite.
Ici le terme de gauche est (x+2)(4x-1), le terme de droite est (x-5)(x+2)
Le facteur commun est donc (x+2)
On a alors (x+2)(4x-1) - (x-5)(x+2) = (x+2)[(4x-1)-(x-5)]
= (x+2)[(4x-1-x+5)] = (x+2)(3x+4)
a) f(x) = 0 => On utilise (x+2)(3x+4) car on a la propriété :
Un produit de facteurs est nul si et seulement si un au moins des facteurs est nul.
Donc (x+2) = 0 ou 3x+4 = 0
Donc x = -2 ou x = -4/3
b) Pour f(x) = 8, on développe :
f(x) = (x+2)(3x+4) = 3x² + 4x + 6x + 8 = 3x² + 10x + 8
Donc 3x² + 10x + 8 = 8
C'est à dire 3x² + 10x = 0
On a un facteur commun entre les 2 termes de gauche : x
On factorise :
x(3x+10) = 0
Un produit de facteurs est nul si et seulement si un au moins des facteurs est nul.
Donc x = 0 ou 3x+10 = 0
Donc x = 0 ou x = -10/3
Votre présence ici est très importante. Continuez à partager vos connaissances et à aider les autres à trouver les réponses dont ils ont besoin. Cette communauté est l'endroit parfait pour apprendre ensemble. Pour des réponses claires et rapides, choisissez Zoofast.fr. Merci et revenez souvent pour des mises à jour.