Obtenez des réponses claires et concises à vos questions sur Zoofast.fr. Rejoignez notre communauté de connaisseurs et accédez à des réponses fiables et complètes sur n'importe quel sujet.

Bonjour, j'ai besoin d'aide pour un exercie de diagonalisation de matrice et ses bornes.
je vous joins l'exercice en pdf ci dessous :

je vous remercie d'avance pour votre aide :

Sagot :

Bonjour,

1) A est de taille [tex]2 \times 2[/tex], donc son polynôme caractéristique s'écrit :

[tex]\chi_A=X^2-\mathrm{tr}(A)X+\det(A)=X^2-tX+1[/tex].

Si [tex]t \not \in \{-2,2\}[/tex], alors le polynôme caractéristique est scindé à racines simples sur [tex]\mathbb{C}[/tex] car son discriminant vaut [tex]\Delta=t^2-4 \not =0[/tex].

Ainsi, A est diagonalisable.

2) Prenons la matrice [tex]A=\left(\begin{array}{cc}1&2\\0&1\end{array}\right)[/tex], qui est bien de trace 2 et de déterminant 1.

Alors A possède pour unique valeur propre 1, et l'espace propre associé a pour dimension 1, car, pour  [tex]X=\left(\begin{tabular}{c}$x$ \\$y$ \end{tabular}\right)[/tex] :

[tex]AX=X \iff \left \{ {{x=\lambda \in \mathbb{C}} \atop {y=0}} \right.[/tex].

Ainsi, A n'est pas diagonalisable.

3) Les valeurs propres de A sont les racines de son polynôme caractéristique, qui sont, puisque [tex]-2<t<2[/tex] :

[tex]\lambda=\dfrac{t+\mathrm{i}\sqrt{4-t^2}}{2}; \; \mu=\dfrac{t-\mathrm{i}\sqrt{4-t^2}}{2}[/tex].

Alors :

- Si v est associé à [tex]\lambda[/tex], pour tout n : [tex]A^n v=\lambda^nv=\left(\frac{t+\mathrm{i}\sqrt{4-t^2}}{2}\right)^n v[/tex].

Or : [tex]\left|\frac{t+\mathrm{i}\sqrt{4-t^2}}{2}\right|=\sqrt{\frac{t^2}{4}+\frac{4-t^2}{4}}=1[/tex],

donc : [tex]|A^nv|_i \le |v|_i \le \max{|v|_1,|v|_2}[/tex] pour [tex]i \in \{1,2\}[/tex]

- Si v est associé à [tex]\mu[/tex], le raisonnement est identique car [tex]|\mu|=|\lambda|[/tex].

4) Dans ce cas, A est diagonalisable, donc il existe une base [tex](v_1,v_2)[/tex] de vecteurs propres, où [tex]v_1[/tex] est associé à [tex]\lambda[/tex] et [tex]v_2[/tex] à [tex]\mu[/tex].

Soit [tex]x \in \mathbb{C}^2[/tex], alors il existe [tex](c_1,c_2) \in \mathbb{C}^2[/tex] tq : [tex]x=c_1v_1+c_2v_2[/tex] (puisque [tex](v_1,v_2)[/tex] est une base).

Alors, pour tout entier n :

[tex]A^nx=c_1A^nv_1+c_2A^nv_2[/tex].

Par la question précédente, il existe un couple [tex](M_1,M_2)[/tex] tq : [tex]\forall n \in \mathbb{N}, \forall i \in \{1,2\}, |A^nv_1|_i \le M_1 \text{ et } |A^nv_2|_i\le M_2[/tex].

Alors :

[tex]\forall n \in \mathbb{N}, |A^nx| \le c_1 M_1+c_2M_2[/tex] et, le majorant étant indépendant de n, [tex]\boxed{\text{$A^nx$ est born\'e quand $n \to +\infty$.}}[/tex]