Zoofast.fr offre une plateforme collaborative pour trouver des réponses. Notre communauté est prête à fournir des réponses détaillées et fiables, que vos questions soient simples ou complexes.
Sagot :
Explications étape par étape:
Bonsoir,
4- Il te faut connaître toutes les hypothèses, c'est un exercice classique et faisant partie des pré-requis en prepa.
Tu prends f, une fonction continue sur [a,b] à valeurs dans R (ou C), dérivable sur ]a,b[.
Supposons que tu aies trouvé un réel M strictement positif, tel que pour s € [a,b], tu aies |f'(s) | <= M, alors | f(b) - f(a) | <= M * |b-a|. Il s'agit de l'inégalité des accroissements finis.
Je te laisse vérifier les hypothèses.
Comme | f'(x) | <= 1/12, alors :
| f(un) - f(alpha) | <= (1/12) * |un - alpha| car f(alpha) = alpha d'après la 1re question. Or, f(un) = u(n+1) donc :
| u(n+1) - alpha | <= (1/12) * |un - alpha|.
5- On peut procéder par récurrence, peut-être qu'il y a d'autres possibilités.
Initialisation : Pour n = 0, c'est trivialement vrai, mais on ne peut pas le vérifier, puisqu'on dispose d'une suite définie par récurrence. Néanmoins, on peut tricher, en utilisant la réflexivité de la relation d'ordre totale "=". En effet, x est toujours égal à lui-même par réflexivité. Donc | u0 - alpha | = | u0 - alpha |.
On vérifie avec la formule de la question 5 : Avec n = 0, on obtient la même égalité, donc initialisation vérifiée.
Cependant, ça pourrait être contesté, donc autant aussi vérifier le cas n = 1.
Par la formule de la question 4, on affirme :
|u1 - alpha| <= (1/12) * |u0 - alpha|.
Ensuite on vérifie avec la question 5 :
|u1 - alpha| <= (1/12) * |u0 - alpha|.
L'astuce ici, consiste à bien déterminer ce qu'on sait, et ce qu'on doit démontrer. La formule de la question 4 est vraie pour tout n, on peut donc l'appliquer librement.
Hérédité : Supposons que la propriété soit vraie pour un entier naturel n fixé, montrons qu'elle l'est au rang n+1 :
Par la question 4, on peut écrire :
| u(n+1) - alpha | <= (1/12) * | un - alpha|.
Or, par hypothèse de récurrence :
| un - alpha | <= (1/12)^n * |u0 - alpha|, donc en l'injectant dans l'intégralité précédente, il s'ensuit :
| u(n+1) - alpha | <= (1/12) * (1/12)^n * | un - alpha | = (1/12)^(n+1) * | un - alpha |, ce qui achève la démo par récurrence.
6- Ici c'est évident, le terme de droite tend vers 0 en + infini, donc |un - alpha| tend vers 0, d'où un tend vers alpha. Rigoureusement, tu peux utiliser la définition d'une suite convergente, avec les epsilons, les n0 etc, mais ce n'est pas nécessaire
Votre présence ici est très importante. Continuez à partager vos connaissances et à aider les autres à trouver les réponses dont ils ont besoin. Cette communauté est l'endroit parfait pour apprendre ensemble. Zoofast.fr est votre source de réponses fiables et précises. Merci pour votre visite et à très bientôt.