Obtenez des conseils d'experts et des connaissances communautaires sur Zoofast.fr. Que ce soit une simple question ou un problème complexe, nos experts ont les réponses dont vous avez besoin.

Bonjour,
J'aurais besoin d'aide sur un exercice de math que je ne comprend absolument pas.
Pouvez vous m'aider ? ;w;

PS : je ne comprend aucun mot mathématique ^^''

Bonjour Jaurais Besoin Daide Sur Un Exercice De Math Que Je Ne Comprend Absolument Pas Pouvez Vous Maider W PS Je Ne Comprend Aucun Mot Mathématique class=

Sagot :

Réponse :

bonjour

Explications étape par étape

1)

a)

f(x)-g(x)

(x³+12)-(x²+8x)

x³+12-x²-8x

x³-x²-8x+12

b)

(x+3)(x-2)²

(x+3)(x²--4x+4)

x³+3x²-4x²-12x+4x+12

x³--x²-8x+12

c)

f(x)-g(x)=(x+3)(x-2)²

2)

a)

f(x)-g(x)> 0f(x)> g(x)   C1 au dessus de C2

f(x)-g(x)=0  f(x)=g(x) C1 etC2 se coupent

f(x)-g(x)< 0 f(x)< g(x) C1 est sous C2

b)

f(x)-g(x)=(x+3)(x-2)²

(x-2)² ≥ 0

x=2  (x-2)²=0

x=-3  x+3=0   x< -3  (x+3)<  0    x>-3   x+3  >0

étudions le signe de

(x+3)(x-2)²

x             -∞               -3                    2                   +∞

(x-2)²               +                  +            0          +

x+3                  -          0       +                       +

(x+3)(x-2)²       -           0       +           0         +

f(x)-g(x)           -            0       +           0         +

d'où

x<-3      f(x)-g(x)<0      f(x)<g(x)   c1 est sous c2

x=-3    f(x)-g(x)=0   f(x) =g(x)   c1 et c2 se coupent

2>x> -3  f(x)-g(x) >0  f(x)>g(x) c1 est au dessus de c2

x=2   f(x)-g(x)=0  f(x)=g(x)  c1 et c2 se coupent

x> 2 f(x)-g(x)> 0 f(x)> g(x)   c1 est au dessus de c2

2)

MN maximum

f(x)-g(x)=x³-x²-8x+12

en étudiant la dérivée nous obteindrons les variation s de

f(x)-g(x)

dérivée

3x²-2x-8

Δ=2²-4(3)(-8)

Δ=4+96

Δ=100

√Δ=10

x1= 2+10/6    x1=12/6     x1=2

x2=  2-10/6   x2=-8/6    x2=-2/3

3x²-2x-8 est du signe de 3 sauf entre les racines

si la dérivée est < 0    la fonction est décroissante

si la dérivée =0           la fonction change de sens

si la dérivée est positive  la fonction estv croissante

   x              -3                         -2/3                     2

3x²-2x-8                +                 0        -              0

x³-x²-8x+12       croissante                 décroissante

donc dans l'intervalle [-3;2]

la fonction est croissante jusque -2/3

le maximum de f(x)-g(x) est atteint pour x=-2/3

f(-2/3)=11.70

g(-2/3)=-4.8

f(-2/3)-g(-2/3)=16.6 arrondi

la longueur maximale de MN sera 16.6

Merci de contribuer à notre discussion. N'oubliez pas de revenir pour découvrir de nouvelles réponses. Continuez à poser des questions, à répondre et à partager des informations utiles. Zoofast.fr est votre allié pour des réponses précises. Merci de nous visiter et à bientôt pour plus de solutions.