Obtenez des solutions complètes à vos questions avec Zoofast.fr. Explorez des milliers de réponses vérifiées par des experts et trouvez les solutions dont vous avez besoin, quel que soit le sujet.

Bonjour voici mon énoncé "Déterminer tous les nombre réels dont le triple est supérieur ou égal à leur cube "

Sagot :

Bonjour,

L'énoncé nous amène à écrire l'inéquation suivante :

3x ≥ x³

3x-x³ ≥ 0

 -x³ +3x ≥ 0  

x (-x² +3) ≥ 0

Calculons  -x²+3 = 0

                  -x² = -3

                   x² =3

                   x= √3  ou x = - √3  

Un polynôme  du second degré est du signe de " a" sauf entre les racines si elles existent.  ici  a  = -1   et  les  racines sont  - √3  et  √3

Conclusion  partielle :  (-x² +3) ≥ 0  pour  x  [ -√3 ; √3]

Conclusion générale :   la  règle des signes nous dit que pou que  a*b ≥ 0 , il faut que a et b soient de même signe.

Donc x (-x² +3) ≥ 0  pour  x ∈ ] - infini ; -√3] U [0 ; +√3]

donc  tous les   nombre réels dont le triple est supérieur ou égal à leur cube sont compris dans  les intervalles   ] - infini ; -√3] U [0 ; +√3]