Zoofast.fr fournit une plateforme conviviale pour partager et obtenir des connaissances. Découvrez des réponses approfondies de professionnels expérimentés couvrant un large éventail de sujets pour satisfaire tous vos besoins d'information.

Montrer que, pour tout x de l'intervalle ]0,+infini[, f'(x)>0. Avec f'(x) = 1-((x-2)-2x)/(x-2)²

Sagot :

simplifiée la dérivée donne [tex]\frac{x^2-x+6}{(x-2)^2^}[/tex]

le réalisant du numérateur est négatif donc le numérateur est toujours positif

le dénominateur est positif également car carré parfait.

donc la dérivée est positive

Bonjour,

 

[tex]f(x)=1-\frac{x-2-2x}{(x-2)^2}=\frac{(x-2)^2-x+2+2x}{(x-2)^2}=\frac{x^2-3x+6}{(x-2)^2}[/tex]

 

Déja la valeur x=2 est interdite car elle annule le dénominateur.

 

[tex](x-2)^2[/tex] est toujours >0 car c'est un carré.

 

[tex]x^2-3x+6[/tex] est un polynome du 2ème degré de la forme [tex]ax^2+bx+c[/tex]

 

On calcule delta :^

 

[tex]delta = b^2-4ac=(-3)^2-4\times6\times1=-15[/tex]

 

Si delta est négatif, le polynome n' a pas de racines.

 

Comme a est positif, la concavité de sa courbe est orientée vers le haut et le polynome est toujours positif.

 

Donc f(x) est toujours positif sauf pour x=2

 

A+