Zoofast.fr propose un mélange unique de réponses expertes et de connaissances communautaires. Posez n'importe quelle question et recevez des réponses précises et bien informées de notre communauté d'experts.

1)a)Dans un repere orthonorme placer les points:

A(6;1),B(3;5),D(11;1).

b)Quelle est la nature du triangle ABD?Justifier.

 

2)E est le point de coordonnees (17/2;6).

Demontrer que E est le centre du cercle C circonscrit au triangle ABD.

 

3)I est le point d'intersection de (AE) et (BD).

a)Quel role joue (AE) pour le segment [BD]? Justifier.

b)En deduire la nature du triangle BIA.

c)Quelles sont les coordonnees du centre F du cercle C circonscrit au triangle BIA?

Sagot :

Bonjour,

Figure en pièce jointe.

1) Calculons les longueurs de 3 côtés du triangle ABD.

[tex]AB=\sqrt{(3-6)^2+(5-1)^2}=\sqrt{(-3)^2+4^2}=\sqrt{9+16}=\sqrt{25}=5\\\\AD=\sqrt{(11-6)^2+(1-1)^2}=\sqrt{5^2+0^2}=\sqrt{25}=5\\\\DB=\sqrt{(11-3)^2+(1-5)^2}=\sqrt{8^2+(-4)^2}=\sqrt{64+16}=\sqrt{80}\approx 8,9[/tex]

Le triangle ABD est isocèle mais n'est pas rectangle car la relation de Pythagore n'est pas vérifiée. (BD² ≠ AB² + AD²).

2) Démontrons que EA = EB = ED.

[tex]EA=\sqrt{(6-\dfrac{17}{2})^2+(1-6)^2}=\sqrt{(-\dfrac{5}{2})^2+(-5)^2}=\sqrt{\dfrac{25}{4}+25}\\=\sqrt{\dfrac{125}{4}}=\dfrac{5\sqrt{5}}{2}\\\\EB=\sqrt{(3-\dfrac{17}{2})^2+(5-6)^2}=\sqrt{(-\dfrac{11}{2})^2+(-1)^2}=\sqrt{\dfrac{121}{4}+1}\\=\sqrt{\dfrac{125}{4}}=\dfrac{5\sqrt{5}}{2}\\\\ED=\sqrt{(11-\dfrac{17}{2})^2+(1-6)^2}=\sqrt{(\dfrac{5}{2}) ^2+(-5)^2}=\sqrt{\dfrac{25}{4}+25}\\=\sqrt{\dfrac{125}{4}}=\dfrac{5\sqrt{5}}{2}[/tex]

3) a ) Puisque 
E est le centre du cercle C circonscrit au triangle ABD, (AE) est la médiatrice du segment [BD].

b) Comme 
(AE) est la médiatrice du segment [BD], les droites (AE) et (BD) sont perpendiculaires.
Le triangle BIA est rectangle en I.

c) Le centre du cercle circonscrit à une triangle rectangle est le milieu de son hypoténuse.

Le point F est donc le milieu du segment [AB]

[tex]F\ (\dfrac{6+3}{2};\dfrac{1+5}{2})\\\\F\ (\dfrac{9}{2} ; 3)[/tex]
View image Аноним
Votre engagement est important pour nous. Continuez à partager vos connaissances et vos expériences. Créons un environnement d'apprentissage agréable et bénéfique pour tous. Merci d'avoir choisi Zoofast.fr. Nous espérons vous revoir bientôt pour plus de solutions.